UruguayUruguay
Detalle
ISBN 978-9915-698-48-9

Descriptive and machine learning statistical methods for finance: Prediction, classification, and uncovering complex patterns

Autor:Ilquimiche Melly, Jorge Luis
Cardenas Lara, Noeding Edith
Castillo Alva, Robert William
Tapia Díaz, Abel
Zevallos Vera, Janeth Magaly
de la Torre Collao, Luis Alberto
Rostaing Ccapacca, Gean Pierre
Editorial:Editorial Mar Caribe
Materia:Matemáticas estadísticas
Clasificación:Normas científicas
Público objetivo:Profesional / académico
Publicado:2025-11-21
Número de edición:1
Número de páginas:0
Tamaño:5Mb
Precio:$860
Soporte:Digital
Formato:Pdf (.pdf)
Idioma:Español
Inglés
Libros relacionados
Descriptive and machine learning statistical methods for finance: Theories and case studies - Sakibaru Mauricio, Luis Alberto; Ortega Rojas, Yesmi Katia; Asián Quiñones, Carlos Alberto; Zapata Villar, Loyo Pepe; Bazan Robles, Romel Dario; Farfán García, Jose; Rojas Orbegoso, Jorge Luis
Descriptive and machine learning statistical methods for finance - Ilquimiche Melly, Jorge Luis; Tena Jacinto, Enio Elias; Castillo Alva, Robert William; Cardenas Lara, Noeding Edith; La Chira Loli, Mónica Beatriz; Alcántara Ramírez, Manuel Abelardo; Asián Quiñones, Carlos Alberto
Métodos estadísticos paramétricos y no paramétricos asistidos con Python y Matlab - Cordova Espinoza, Mariela Lizety; Ponte Valverde, Segundo Ignacio; Panocca Orellana, Walter Jacinto; Zapillado Huanco, Oscar Adrian; Armas Juarez, Ricardo Antonio; Asnate Salazar, Edwin Johny
Métodos estadísticos asistidos con software: Aplicaciones en Python, Octave y R - Asnate Salazar, Edwin Johny; Correa Becerra, Ramón Cosme; Villareal Torres, Henry Oswaldo; Corcuera De los Santos, Marco Antonio; Valencia Castillo, Edwin Alberto; Rodríguez Ávila, Sandra Cecilia; Yajahuanca Huancas, Raúl
Estadística bayesiana, análisis de componentes principales y factorial exploratorio aplicado a la investigación científica transdisciplinaria - Melendez Rosales, Jorge Luis; Aguado Lingan, Aracelli Mónica; Paz Rubio, Deyanira Elizabeth; Ponte Valverde, Segundo Ignacio; Sanchez Farfan, Yeli Sandra; Blanco Napuri De Martínez, Ana Cristhina; Huaman Cusihuaman, Julio Cesar

Reseña

Descriptive statistics refers to a set of fine and graphical tools used to epitomize and describe essential features of a dataset. These statistics provide a clear and concise representation of the data, enabling experimenters, judges, and decision-makers to gain valuable insight, identify patterns, and understand the characteristics of the information at hand. Descriptive statistics are the essential first step in fiscal analysis, used to epitomize and organize large datasets to reveal their main characteristics. They give a foundational understanding of asset returns, price movements, and threats. Machine learning (ML) models are based on statistical foundations to handle large volumes of data, model complex non-linear patterns, and perform prediction (regression) and classification tasks.

Contáctenos:

18 de julio 1790 / Tel. 2409 6012 int. 216