UruguayUruguay
Detalle
ISBN 978-9915-698-46-5

Descriptive and machine learning statistical methods for finance: Theories and case studies

Autor:Sakibaru Mauricio, Luis Alberto
Ortega Rojas, Yesmi Katia
Asián Quiñones, Carlos Alberto
Zapata Villar, Loyo Pepe
Bazan Robles, Romel Dario
Farfán García, Jose
Rojas Orbegoso, Jorge Luis
Editorial:Editorial Mar Caribe
Materia:Matemáticas estadísticas
Público objetivo:Profesional / académico
Publicado:2025-11-17
Número de edición:1
Tamaño:5Mb
Precio:$860
Soporte:Digital
Formato:Pdf (.pdf)
Idioma:Inglés
Libros relacionados
Descriptive and machine learning statistical methods for finance: Prediction, classification, and uncovering complex patterns - Ilquimiche Melly, Jorge Luis; Cardenas Lara, Noeding Edith; Castillo Alva, Robert William; Tapia Díaz, Abel; Zevallos Vera, Janeth Magaly; de la Torre Collao, Luis Alberto; Rostaing Ccapacca, Gean Pierre
Descriptive and machine learning statistical methods for finance - Ilquimiche Melly, Jorge Luis; Tena Jacinto, Enio Elias; Castillo Alva, Robert William; Cardenas Lara, Noeding Edith; La Chira Loli, Mónica Beatriz; Alcántara Ramírez, Manuel Abelardo; Asián Quiñones, Carlos Alberto
Métodos estadísticos paramétricos y no paramétricos asistidos con Python y Matlab - Cordova Espinoza, Mariela Lizety; Ponte Valverde, Segundo Ignacio; Panocca Orellana, Walter Jacinto; Zapillado Huanco, Oscar Adrian; Armas Juarez, Ricardo Antonio; Asnate Salazar, Edwin Johny
Métodos estadísticos asistidos con software: Aplicaciones en Python, Octave y R - Asnate Salazar, Edwin Johny; Correa Becerra, Ramón Cosme; Villareal Torres, Henry Oswaldo; Corcuera De los Santos, Marco Antonio; Valencia Castillo, Edwin Alberto; Rodríguez Ávila, Sandra Cecilia; Yajahuanca Huancas, Raúl
Estadística bayesiana, análisis de componentes principales y factorial exploratorio aplicado a la investigación científica transdisciplinaria - Melendez Rosales, Jorge Luis; Aguado Lingan, Aracelli Mónica; Paz Rubio, Deyanira Elizabeth; Ponte Valverde, Segundo Ignacio; Sanchez Farfan, Yeli Sandra; Blanco Napuri De Martínez, Ana Cristhina; Huaman Cusihuaman, Julio Cesar

Reseña

The primary benefit of Machine Learning in finance is its ability to process vast, diverse datasets and uncover nonlinear relationships and interactions that traditional statistical models, such as simple linear regression, often miss. This leads to better risk management, more accurate asset pricing, and improved algorithmic trading strategies. While traditional time series models like ARIMA are statistical, ML methods such as Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTMs) are increasingly used for their ability to model complex temporal dependencies.

Contáctenos:

18 de julio 1790 / Tel. 2409 6012 int. 216