UruguayUruguay
Detalle
ISBN 978-9915-698-45-8

Descriptive and machine learning statistical methods for finance

Autor:Ilquimiche Melly, Jorge Luis
Tena Jacinto, Enio Elias
Castillo Alva, Robert William
Cardenas Lara, Noeding Edith
La Chira Loli, Mónica Beatriz
Alcántara Ramírez, Manuel Abelardo
Asián Quiñones, Carlos Alberto
Editorial:Editorial Mar Caribe
Materia:Matemáticas estadísticas
Público objetivo:Profesional / académico
Publicado:2025-10-31
Número de edición:1
Tamaño:5Mb
Precio:$430
Soporte:Digital
Formato:Pdf (.pdf)
Idioma:Inglés
Libros relacionados
Métodos estadísticos paramétricos y no paramétricos asistidos con Python y Matlab - Cordova Espinoza, Mariela Lizety; Ponte Valverde, Segundo Ignacio; Panocca Orellana, Walter Jacinto; Zapillado Huanco, Oscar Adrian; Armas Juarez, Ricardo Antonio; Asnate Salazar, Edwin Johny
Métodos estadísticos asistidos con software: Aplicaciones en Python, Octave y R - Asnate Salazar, Edwin Johny; Correa Becerra, Ramón Cosme; Villareal Torres, Henry Oswaldo; Corcuera De los Santos, Marco Antonio; Valencia Castillo, Edwin Alberto; Rodríguez Ávila, Sandra Cecilia; Yajahuanca Huancas, Raúl
Análisis de componentes principales, factorial exploratorio y confirmatorio en el campo de la bioinformática - Sánchez Villavicencio, María Félix; Jiménez Huayama, Mayckol; Chulle Chapilliquen, Jassayra Araliz; Espino Aguirre, Hebert Eduardo; Alvarado Juárez, José Francisco; Castro Mendocilla, Wilmer Edwin
Métodos estadísticos aplicados a la investigación científica con software SPSS y XLSTAT - Sánchez Villavicencio, María Félix; Escobar Gómez, Eder; Gutiérrez Segura, Flabio Alfonso; Jiménez Huayama, Lizardo Javier; Lujan Segura, Edwar; Robles Villanueva, Oscar Antonio
Estadística bayesiana, análisis de componentes principales y factorial exploratorio aplicado a la investigación científica transdisciplinaria - Melendez Rosales, Jorge Luis; Aguado Lingan, Aracelli Mónica; Paz Rubio, Deyanira Elizabeth; Ponte Valverde, Segundo Ignacio; Sanchez Farfan, Yeli Sandra; Blanco Napuri De Martínez, Ana Cristhina; Huaman Cusihuaman, Julio Cesar

Reseña

These methods involve summarizing and describing the key features of financial data. Common descriptive statistics include measures of central tendency (mean, median), dispersion (variance, standard deviation), skewness, kurtosis, and correlation coefficients. Descriptive analysis helps understand the distribution, trends, and relationships in financial time-series data, asset returns, risk measures, and other financial metrics. These methods form the foundation for more advanced modeling by providing initial insights into data behavior and characteristics.
Machine learning (ML) methods go beyond traditional statistics by enabling automated pattern recognition, prediction, and classification from complex, high-dimensional financial datasets. ML approaches used in finance include supervised learning (such as regression, classification, support vector machines, random forests, neural networks), unsupervised learning (such as clustering, dimensionality reduction), and reinforcement learning. These methods are used for tasks like asset price prediction, portfolio optimization, fraud detection, credit scoring, and algorithmic trading. ML models can identify nonlinear relationships and interactions in financial data that traditional descriptive statistics might miss.

Contáctenos:

18 de julio 1790 / Tel. 2409 6012 int. 216